Ionic channels in excitable membranes. Current problems and biophysical approaches.

نویسنده

  • B Hille
چکیده

Ionic channels are gated aqueous pores whose conformational changes are driven by the electric field in the membrane. Gating may be studied by three electrical methods: ionic current transients, ionic current fluctuations, and "gating current," and probably occurs through a series of conformational changes in the channel leading to an all-or-nothing opening of the pore. When the potential is held constant, the gating steps come to equilibrium rather than reaching an energy-dissipating, cyclic steady state. The kinetic models now in use eventually need to be changed to correct disagreements with several recent studies. Diffusion of ions through open channels is very fast but involves many interactions of ions, pore, and solvent that lead to ionic selectivity, saturation, block, and flux coupling. Our description of the ionic fluxes can be improved by abandoning continuum models in favor of more structured ones. Problems to be solved include determining how many ions occupy a channel at once and what to be solved include determining how many ions occupy a channel at once and what kind of energy barriers they must cross in traversing the membrane. Ultimately we will need to know the chemical structure of the whole system to understand how it functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Transition Rates in Excitable Membranes

Adaptation of activity in excitable membranes occurs over a wide range of timescales. Standard computational approaches handle this wide temporal range in terms of multiple states and related reaction rates emanating from the complexity of ionic channels. The study described here takes a different (perhaps complementary) approach, by interpreting ion channel kinetics in terms of population dyna...

متن کامل

Biophysical properties of single potassium channel in the brain mitochondrial inner membrane of male rat with Alzheimer’s disease

Introduction: Alzheimer’s disease is a progressive neurodegenerative disorder, characterized by impairment of memory and changes in behavior and personality. Recent evidence suggests that mitochondrial channels play important roles in memory disorders. Accordingly, the biophysical properties of a single potassium channel were investigated in the brain mitochondrial inner membrane of rat with...

متن کامل

Function of Shaker potassium channels produced by cell-free translation upon injection into Xenopus oocytes

Voltage-gated ion channels are a class of membrane proteins that temporally orchestrate the ion flux critical for chemical and electrical signaling in excitable cells. Current methods to investigate the function of these channels rely on heterologous expression in living systems or reconstitution into artificial membranes; however these approaches have inherent drawbacks which limit potential b...

متن کامل

Monolayer and Interfacial Permeation

Transport across physical-chemical interfaces is considered in connection with three particular problems of biological interfaces: the structure and properties of cell membranes, the properties of the lung surfactant, and the effects of ionic currents across excitable membranes. With regard to cell membranes, studies of monolayer permeation suggest that permselectivity on the basis of size is a...

متن کامل

Biophysical and electropharmacological properties of single mitoKATP channel in rat brain mitochondrial inner membrane

Introduction: Different ATP-sensitive potassium channels have been detected in the mitochondrial inner membrane of cells. They are suggested to be involved in cell processes including cell protection. Here, we characterized the biophysical and electropharmacological properties of a KATP channel in the brain mitochondrial inner membranes. Methods: After removing and homogenizing the rat brain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 1978